
NGINX
by

Example

Optimized by Humans. Approved by Servers.

Jason Joseph Nathan

VOLUME 1

A cookbook inspired by real-world

solutions and scribbled sticky notes

NGINX by Example Vol. 1
© 2025 Jason Joseph Nathan

All rights reserved.

No part of this book may be reproduced, stored or transmitted in any
form or by any means - electronic, mechanical, photocopying, record-
ing or otherwise - without the prior written permission of the publisher,
except in the case of brief quotations used in reviews or articles.

First edition.

Published in Singapore.

Published under the Geekist.co imprint.
Set in Lora & Ysabeau Office and designed using Adobe InDesign.

i

Dedicated to my children

the innocent
caught in the chaos of others

ii

Preface
I’ve been using NGINX for years now, sometime in the mid to late 2000s, back
when Igor Sysoev was still actively maintaining it, just before F5 took over.

Even then, the value was obvious: speed. I remember testing it - Apache
on a fresh LAMP stack versus NGINX with PHP - and seeing page load
times drop from 200ms to 20ms out of the box. That alone sold me, and
the rest is history.

Decades later, there are plenty of books on NGINX and I’ve read more than
a few. But I always found them either too academic or too full of jargon for
what is already a pretty dry topic. I wanted something that explained how
things work, but also why and when, without losing someone in the weeds.

That’s easier said than done. Writing this book meant accounting for real-
world scenarios and edge cases, while keeping things readable. So this is
my attempt at organizing years of scribbled notes into something practical
and (hopefully) enjoyable.

Volume I is split into three chapters, each covering a specific theme. Within
each topic, I’ve framed a problem, introduced a usable pattern, and then
expanded on its variations and caveats.

Yes, this is a collection of battle-tested notes, but also a refinement of ev-
erything I’ve learned from other books & docs and late-night experiments,
updated to reflect today’s best practices.

You’ll find companion code and configurations at:

https://geekist.co/nginx-by-example

To follow updates from the broader Geekist ecosystem:

https://geekist.co/subscribe/

I hope you enjoy reading this as much as I’ve enjoyed writing it.

https://geekist.co/nginx-by-example
https://geekist.co/subscribe/

iii

Contents
CHAPTER I

The Hidden Power in Your Web Server 1

How OCSP Stapling Makes Browsers Trust You Faster . 3

One SSL Config to Rule All Your Subdomains 7

Mutual TLS Without the Headache 11

Serve Any Subdomain
Without Touching Your Config 15

The SSL Best Practices That Save You Later 20

CHAPTER II

Traffic Isn’t Dumb So Your Server Shouldn’t Be 25

Handling Real-Time Connections 27

Reverse Proxies That Outlive
Their Upstreams 32

Let Your API Fail Gracefully
with Static Fallbacks 35

Shift Traffic Gradually with Blue-Green Upstreams . 39

An API Gateway That Knows Who It’s Talking To . . 43

Keep Your Gateway Safe and Sane 48

CHAPTER III

The Art of
Serving Less, Faster 53

iv

Serve Smaller Pages Without
Breaking the Browser 55

Dynamic Images Without
Changing Your Markup 59

Speed up WordPress Using Just NGINX 63

The Invisible CDN Trick
Behind Every Display Pic 67

Pre-Warm Your Cache Like You Mean It 71

Static Performance That Holds Under Load 76

Epilogue . 79

1

The Hidden Power in Your Web Server

CHAPTER I

The Hidden Power in
Your Web Server

Introduction

For many of us, HTTPS feels like a solved problem. You run Certbot,
the browser gives you a reassuring padlock and you move on. Some-

times your hosting provider your CDN abstracts it away and in most
cases, that’s actually good enough.

Until it isn’t.

One day, something breaks. A customer signs up and their subdomain fails
to load, or a QA environment stops working because the server refuses the
connection. Sometimes (especially with Certbot), a certificate expires and
nobody notices until dashboards across the board stop rendering.

You dig through the configs and discover a mess of inconsistencies: dupli-
cated blocks, mismatched headers, SSL paths pointing to the wrong files,
even a missing redirect or two. What was once a clean setup becomes fragile
patchwork built on best intentions and rushed fixes.

This is where most developers get stuck. They treat NGINX as a simple
router or static file server or a reverse proxy with just enough brains to get
requests where they need to go. But NGINX is far more capable than that.
It can manage trust. It can negotiate identity. It can serve as a rules engine,
a security layer and a control tower, all in one place.

This chapter is about rediscovering that power.

We’re not just going to turn on HTTPS, we’re going to design for it. Our
configs will be structured so that the secure path is the path of least resistance.

2How OCSP Stapling Makes Browsers Trust You Faster

The Hidden Power in Your Web Server

TLS parameters will be centralized, redirects made consistent and every
subdomain - from staging to production - will inherit the same best prac-
tices by default.

We’ll go deeper, too. We’ll explore mutual TLS for scenarios where trust
isn’t one-way and build tenant-aware routing with wildcard subdomains.
And we’ll do it all in a way that’s maintainable and scalable - and surpris-
ingly clean.

It’s a secure, resilient foundation, using the tools you already have but
probably aren’t using fully.

The goal isn’t to impress with clever tricks. It’s to sleep better at night,
knowing your infrastructure has your back.

Let’s begin.

3How OCSP Stapling Makes Browsers Trust You Faster

The Hidden Power in Your Web Server

How OCSP Stapling Makes
Browsers Trust You Faster
When you secure your site with HTTPS, you’re not just encrypting traffic.
You’re making a promise. That certificate? It tells browsers and users that
this domain belongs to you and that a trusted authority verified it.

But trust is fragile.

If your certificate gets revoked (compromise maybe or expiration), you want
browsers to know - and fast. And you want that check to happen without
adding delays to every page load.

That’s where OCSP stapling comes in. It’s your way of saying: “Here’s
proof that this certificate is still valid. Don’t just trust me... here’s the lat-
est response from the issuer.”

It matters even more with wildcard certificates because if trust breaks once,
it breaks for every subdomain you own.

The Problem
Every modern browser supports the Online Certificate Status Protocol
(OCSP) but by default they must contact the certificate authority to check
whether your cert has been revoked. This introduces a few issues:

• A live internet connection is needed the first time your site loads
• The CA’s OCSP server becomes a single point of failure
• IIf it’s slow or unreachable, your site appears broken or un-trusted
Worse, some browsers “soft fail,” meaning they allow the connection even
if the check fails, defeating the point of revocation.

The Pattern
You only need to configure stapling once. By placing these directives in your
global SSL include file, every subdomain benefits automatically.

4How OCSP Stapling Makes Browsers Trust You Faster

The Hidden Power in Your Web Server

The Implementation
In this chapter, we’d often refer to a shared ssl_params file, which is a
central place to define TLS settings and certificate logic for all your server
blocks. Here’s how that file might look with OCSP stapling configured:

/etc/nginx/ssl_params
ssl_certificate /etc/ssl/certs/example_com.crt;
ssl_certificate_key /etc/ssl/private/example_com.key;

ssl_protocols TLSv1.2 TLSv1.3;
ssl_prefer_server_ciphers on;
ssl_ciphers EECDH+AESGCM:EDH+AESGCM;

ssl_stapling on;
ssl_stapling_verify on;

ssl_trusted_certificate /etc/ssl/certs/ca-bundle.crt;
resolver 8.8.8.8 1.1.1.1 valid=300s;
resolver_timeout 5s;

Let’s break this down.

• `ssl_stapling on;` enables stapling support.
• `ssl_stapling_verify on;` ensures the response is cryptographically

valid.
• `ssl_trusted_certificate` must point to a CA bundle that includes the

issuer of your cert or stapling eill fail silent

Exceptions and Variants
You might encounter setups where OCSP stapling does not work as expected.
Some common issues are:

1. Your certificate authority does not support OCSP

2. The intermediate certs were not installed correctly

3. The CA’s response URI is unreachable from your server

5How OCSP Stapling Makes Browsers Trust You Faster

The Hidden Power in Your Web Server

4. You’re using Let’s Encrypt with certs obtained via DNS challenge and
missing intermediate chains

To debug stapling, use:

openssl s_client -connect example.com:443 -status

You should see an OCSP response block. If you don’t, something’s wrong.

Also note: OCSP responses are cached. If you restart NGINX too frequently,
you may see temporary failures.

Testing the Setup
Run the following after you’ve configured and reloaded NGINX:

curl -v https://localhost:8443 --cacert ./ca.crt

Look for the output:

OCSP stapling test passed.

Followed by response data. If it’s missing entirely, stapling isn’t working.

Operational Notes
• OCSP responses are usually valid for 4 to 7 days. NGINX caches them

in memory, so there’s no need to re-fetch on every request.
• If you rotate your certificate, the OCSP cache is flushed. The next

TLS request will trigger a fresh lookup.
• If your server cannot reach the CA’s OCSP endpoint, stapling will

fail silently unless you log it explicitly.
• Some CDNs automatically staple OCSP responses. If you’re behind

one, your origin does not need to do it but it’s a good practice any-
way.

6One SSL Config to Rule All Your Subdomains

The Hidden Power in Your Web Server

Summary
OCSP stapling is one of those things most people forget to configure, even
though it’s almost always supported by modern certs, browsers & web servers.

When you’re using a wildcard certificate, the stakes are even higher. That
one certificate holds the keys to every subdomain you serve. If something
goes wrong, it affects all of them.

By enabling OCSP stapling and doing it in a central, shared location, you’re
not just improving performance, you’re showing every visitor that trust
still holds.

You’re proving it before they even have to ask.

7One SSL Config to Rule All Your Subdomains

The Hidden Power in Your Web Server

One SSL Config to Rule All
Your Subdomains
It always starts small. A subdomain here, another one there. Maybe it is
a new blog.example.com or an app you are testing. A dev tool sneaks in,
followed by a quick client preview. Before you even realize it, your once-
pristine NGINX config becomes a patchwork of near-duplicates. Each
block feels familiar but none are exactly the same.

At first, these things seem harmless. A little maintenance task to get
to later. Yet over time, this kind of manual sprawl does more than just
waste your energy, it introduces fragility into your system

It doesn’t have to be that way. There is a better foundation waiting just
beneath the surface. And it starts by making the right structure the easy
default.

Let’s fix this.

The Problem
You’re probably using a wildcard certificate already. That’s a good start.
But if NGINX still treats every subdomain as a separate special case, you
haven’t really solved the problem.

Because that just means you’ve managed to centralize just one part of
the bigger picture: the certificate. Not so much the logic surrounding
how it is used.

The Pattern
Solving this is surprisingly straightforward. You create a single redirect
that catches all HTTP traffic, no matter which subdomain it comes from.
You pull your SSL parameters into a shared file so that every subdomain
inherits the same secure defaults. And instead of bloated, repetitive

67The Invisible CDN Trick Behind Every Display Pic

The Art of Serving Less, Faster

The Invisible CDN Trick
Behind Every Display Pic
We often think of CDNs as third-party tools or platforms you pay for, with
dashboards and edge locations and lots of boxes ticked behind the scenes.

But for one specific use case, long before anyone was throwing around
terms like “edge compute” or “dynamic delivery,” we had already solved it
but not with a service, a pattern.

What we built didn’t look like a CDN. It had no domain change and no
purge strategy.

But it behaved like one. It delivered dynamic content at static speed. And
more than a decade later, the pattern still holds up.

This section is about the trick behind it: serving dynamic assets through
NGINX using internal redirects.

No plugin. No third-party API. Just your own server used well.

The Problem
Let’s say you run a social app. Each user has a profile picture. Sometimes
called an avatar or DP, depending on which corner of the internet you
came from.

DPs sound simple but they introduce subtle complications. When a user
updates their avatar, that new image needs to appear instantly (across
old posts, messages and profile views etc.) without sacrificing speed or
breaking the cache.

If you serve images through a backend script, they can’t be cached effec-
tively. If you generate new filenames for each update, old content becomes
outdated and if you overwrite existing files, you risk stale caches that are
hard to control.

79Static Performance That Holds Under Load

Epilogue

Epilogue
Thank you for reading until the end. If you’ve followed the examples, your
NGINX setup should already feel lighter to maintain. You might even notice
the difference in real time, especially in how your stack behaves under load.

This volume deliberately focused on what can be achieved with mostly
static configurations. But even these benefit from ongoing observation.
Analysing traffic patterns over time, reviewing your caching behaviour
and paying attention to bottlenecks can reveal small tweaks that lead to
major improvements.

In other words, while these configurations are reactive by nature, they should
not be treated as fire-and-forget. A little strategic intervention now and
then can make even a static setup adapt to changing needs.

Volume 2 will take this foundation further. We’ll look at dynamic configura-
tions, scripting with `njs`, and techniques for working with live metadata
and runtime decisions. We’ll explore how NGINX can integrate into larger
ecosystems, interacting with frameworks and tools without losing its sim-
plicity. Most of all, we’ll uncover ways to solve common infrastructure
problems without relying on expensive external platforms.

All code examples, future updates, and companion material live at

https://geekist.co/nginx-by-example.

That’s also where Volume 2 will be released.

If you want to stay ahead of that release, the best place is geekist.co. It’s
where I write about all things Geek.

If this book helped you and you’d like to recommend it to others, you can
join the partner programme. Affiliate details are available on the store page.
If you’d like to support the work behind this book, or the journey that made
it necessary, you can do so at paypal.me/jjnathan.

I’m grateful either way, this book already means more than you know.

https://geekist.co/nginx-by-example.
https://geekist.co
https://paypal.me/jjnathan

	CHAPTER I
	The Hidden Power in Your Web Server
	How OCSP Stapling Makes Browsers Trust You Faster
	One SSL Config to Rule All Your Subdomains

	CHAPTER III
	The Art of
Serving Less, Faster
	Serve Smaller Pages Without
Breaking the Browser
	The Invisible CDN Trick
Behind Every Display Pic

	Epilogue

